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Grifhths and Chou introduced a method of effective potentials for tinding the ground states 
of a class of systems that can be described by classical one-dimensional Hamiltonians with 
nearest neighbor interactions. In practice the effective potentials must be solved numerically 
by discretization on a grid of N points. Existing algorithms have calculation times that vary 
as N2 or worse. We show how this can be reduced to linear in N by means of straightforward 
optimizations that take advantage of the properties of the effective potentials. i/“ 1990 Academic 

Press. Inc. 

1. INTRODUCTION 

Consider the problem of finding the ground states of a one-dimensional chain of 
atoms with Hamiltonian of the form 

$=I [IVun)+ w%i+I-&I)l, 
n 

(1) 

where u, is the position of the nth atom, V(x) is a periodic substrate potential, and 
W(x) is an interaction potential acting between adjacent atoms. A common 
approach is to consider the force equilibrium equations 

ax -= V’(u,)+ W’(U,-U,_l)- wI(un+,-u,)=O, 
au, (2) 

where primes indicate spatial derivatives. Unfortunately (2) is satisfied, not only for 
ground states, but for any extremal configurations including those that maximize 
(1). Nonetheless, when W(x) is everywhere convex (W”(x) > 0), (2) can be written 
as a two-dimensional area preserving map and the trajectories of this map contain 
information on the ground states of (1) [4]. When W(x) is not an everywhere 
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convex function of x the map is no longer well defined and cannot be used as easily 
if at all. 

Recently, Grifliths and Chou [ 1, 21 introduced the method of effective potentials 
by means of which one can find the exact ground state of (1) even when W(x) is 
a nonconvex function, that is when W”(x) < 0 for one or more values of x. 

In this paper, we present a modified version of the numerical iterative method 
that was described in Refs. [l, 21. To the unmodified version, whose execution time 
varies roughly as N2, where N is the size of the grid on which the effective potential 
is discretized, we add a number of optimizations that result in an execution time 
that is roughly linear in N. The rest of the paper is organized as follows: In 
Section 2 we describe the method of effective potentials and the discretization that 
is used to obtain numerical results. We then show, in the same section, how three 
types of optimization on the basic numerical procedure are implemented. In 
Section 3 we present numerical results including an analysis of the errors present in 
our numerical method and results for the method’s performance for different levels 
of optimization. Finally, in Section 4, we conclude with some comments on how 
one might extend our numerical procedure to solve for the effective potential in 
more complicated situations such as when second neighbor interactions are added 
to (1). 

It should be made clear from the outset that the numerical procedure presented 
here is based on a number of assumptions for which we have no analytic proof. Our 
justification for them is twofold: First, the method works; when the optimizations 
are removed the same results are obtained albeit at the expense of increased 
execution time. Second, it is found that our assumptions are valid for a number of 
characteristic cases and it is hoped that the same behavior will occur whenever 
similar conditions are present. 

2. THE METHOD OF EFFECTIVE POTENTIALS 

The method of effective potentials that was introduced by Griffiths and Chou 
[ 1, 21 involves solving the nonlinear eigenvalue equation 

Nun+ I )+A= V%l+,)+ minCWu,+, -uJ+Nu,)l 4 

= Z”R( u,). (3) 

The eigenvector, R(u,), will be referred to as the right effective potential and 
physically corresponds to the minimum energy of a semi-infinite chain of atoms; 
(u,}:i~ [-co, n]; when the rightmost atom is held fixed at the position u,. The 
eigenvalue, A, corresponds to the average energy per atom in an infinite chain and 
X is a functional operator which has the effect of adding one more atom to the 
chain. Similarly, for a semi-infinite chain of atoms; {u;}: ie [n, CO]; when the 
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leftmost atom is held fixed at the position u,, one can define the left effective 
potential 

S(U,-,)+A= V(u,_,)+min[W(u,,-u,~,)+S(u,)] 
Un 

= XS(u,). (4) 

The full effective potential felt by an atom in an infinite chain of atoms is then 

F(u) = R(u) + S(u) - V(u). (5) 

The derivation of (3)-(5) is detailed in Ref. [2]. Note that R, S, and F all have the 
same periodicitiy as I’. In this work we are only interested in systems with inversion 
symmetry, V(U) = V( -u), in which case S(U) = R( -u) and we need only concen- 
trate on the calculation of R(u) which, henceforth, we shall refer to simply as the 
effective potential. Once R(u) has been calculated, it is a simple matter to find the 
ground state positions of the atoms. Define the map [l, 21 

7(%.l)‘%l (6) 

to be that u, which minimizes the right-hand side of (3) for a given u,, i. Physi- 
cally, if a semi-infinite chain has its rightmost atom fixed at U, then the sequence 
u,- I = r(u,), u,~ 2 = r(r(u,)), u,- 3 = 7(7(7(24,))),..., gives the ground state atomic 
positions for atoms successively farther to the left in the chain. As 7(x) is iterated 
it converges to the ground state map (far from the rightmost atom, the effects of 
this atom on the chain are exponentially small and the atomic positions will tend 
toward those of the infinite chain). For a commensurate ground state, 7(x) 

converges to a limit cycle with finite period. For incommensurate ground states 7(x) 

does not repeat. 

A. The Discretized Effective Potentials 

An analytic solution to (3) is, in general, impossible and it is usual to solve for 
the discretized effective potential on a grid of N evenly spaced points. As a result of 
the discretization, one cannot distinguish between atoms whose ground state 
positions correspond to distances closer than about one grid spacing and so, for 
finite N, one will never find incommensurate or higher order commensurate ground 
states. Nevertheless, it is often the case that low order commensurate configurations 
account for most of the volume in large regions of parameter space, and in these 
regions the discretized numerical method is appropriate and often gives clues as to 
how higher order commensurate (and perhaps incommensurate) states occur in the 
phase diagram. 

The discretization need only be done over one full period of R(u) which, as men- 
tioned, has the same periodicity as V(U). In some cases only a fraction of a full 
period need actually be considered. Let the discretized approximation to R(u) be 
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RN(u) for a grid of N points where u is understood to be taken on this grid. We 
require that RN(u) satisfy (3) with the minimization now occurring over the 
discrete set of points. Given a point u on a chosen grid of N points, it will not 
generally be the case that R,,,(U) = R(u) and hence the discretization leads to there 
being an intrinsic error in the calculation of the effective potential. An important 
question is then: under what circumstances is the intrinsic error negligible and to 
what extent is R,,,(U) a good approximation to R(u). For instance, does RN(u) lead 
to the correct ground state periodicity. One method of measuring how well RN(u) 
approximates R(u) is to consider how RN(u) converges as N is increased by suc- 
cessive grid douhlings. This is the approach that we use and that will be discussed 
in more detail in Sections 2B and 3B. It should be mentioned that the problem of 
solving the discrete form of (3) falls into a class of problems occurring in minimax 
algebra [S]. To solve for the discrete form of (3) we use a variation of the iterative 
method originally used by Grifftths and Chou [ 1, 21 in which RN(u) is solved 
iteratively: 

R$i”(U)=& [c&,R$‘(u)+mR’,k’(u)] - Ck+l, 

where R$’ is the kth approximation to R,, C, + 1 is a constant chosen so that the 
minimum value of R$$ + ‘j(u) is zero, and XN represents the operator X on the 
discrete grid. A second approach-a modified Karp-von Golitschek method-has 
recently been described by Florida and Griffrths [3]. In our method, convergence 
to a reasonable effective potential always seems to occur though we have no proof 
that this should be so. The constant m in (7) is chosen for optimum convergence 
of R(Nk) to R, = Rp). A measure of this convergence is given by 

A(k) = max IR(k)(u) - R(k-m 1) 
N N N t”)l 

u 
(8) 

and RF’ is considered to have converged when 

Aiyk)<~(N), (9) 

where s(N) is a measure of the required precision and is usually taken to be some 
small fraction of the characteristic energy scale as determined by V(x). Since A jyk) 
does not always converge monotonically we generally require that (9) be satisfied 
for several consecutive iterations of (7). A more quantitative analysis of these points 
is presented in Section 3A. The error in the calculation of RN(u), resulting from ter- 
minating the iteration of (7) at a finite value of k, will be referred to as the iteration 
error (we assume that R$)(u) does converge to RN(u) as k -+ co), We have tried 
different values of m in (7) and find m z 1 (m = 1 was used in Ref. [l, 2]), to be 
optimal with convergence always found to occur. For m $1, Alyk) always seems to 
converge albeit slowly since R:)(U) is heavily weighted by R’,” ~ l’(u). For m 4 1, on 
the other hand, (7) does not seem to converge at all. Henceforth we only consider 
m = 1 though some interesting results when m = 0 are reported bieflv in Section 3C. 
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In (7), each iteration requires solving for @j(u) at N different values of U. At 
each U, one must solve for $&R$‘(u’) which involves a minimization over PN 
values of u’, where /I is a model dependent constant (typically 1 5 /J 5 2). The 
calculation time for R, is given by 

t,, = /?t,Y( N, E) N’, (10) 

where t, is the calculation time per point (u, u’) and .F(N, E) is the number of itera- 
tions required for convergence and depends on both N and E = s(N). Note that 
.Y(N, E) also depends on the exact form of the potentials being considered. In most 
cases the dependence on N is found, numerically, to be weak so that (10) depends 
predominantly on the square of N. Note also that Y(N, E) depends on the initial 
guess R, . “I It is rarely possible to obtain a good guess for R(NO’ and we generally 
choose V(x) as a starting point. With the optimizations that are described below 
the initial guess turns our to be unimportant. In addition, because of the discretiza- 
tion of R(u), the map (6) must also be discretized: 

When zN(u) is iterated it must converge to a limit cycle of period N or less and 
hence only commensurate states are seen. 

B. Grid Doubling 

One way to obtain R ‘,“’ is by means of successive doublings of the number of 
points on the grid. Starting with No grid points, with N/N, a power of 2, RF’ can 
be quickly calculated to within a precision so, where we use the simplified notation 
cd= s(Nd) and $,= 9(N,, Ed). It is then easy to to obtain Rt: from R!$’ by inter- 
polation, where N, = 2No. More generally, Rrj+, is obtained from Rhy), where 
N,= No2d and d refers to the number of grid doublings that have been performed. 
With D total grid doublings, the solution time is given by 

t,, = Bt, 2 5 4“.f(N/2D-d, cd). 
d=O 

(11) 

Numerically it is found that the number of iterations is roughly independent of N 
for a given Ed. Setting Y(N/2DPd, .sd)=$O for d<D then, as D+cm 

t CT QtpN2[+.a,+&] (12) 

which shows that the total calculation time is dominated by that of the final largest 
grid. 

As has already been mentioned, if u is a point on a grid of both N, and 
N d+ i = 2N, points then there is an intrinsic error and it is generally not true that 
R ,,,(,+,(u)= RN,,(u)= R(u), since both RNd+,(u) and RNd(u) are only discrete 
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approximations to the true effective potential R(v). A quantitative measure of the 
intrinsic error is, within the grid doubling scheme, given by 

AR’NmS describes, as a function of N, the overall convergence of RN(u) to the 
undiscretized R(u) while ARF measures the worst case convergence indicating 
how uniformly R, converges. As is shown in Section 3A, both ARF and ARyX 
show a power law behavior in N and can be used to estimate the maximum intrin- 
sic error in RN(u). 

It is worth commenting on the two types of error, intrinsic and iteration. For a 
chosen grid of N points and as (7) is iterated there is, after the kth iteration, a total 
error that is a combination of the intrinsic and iteration errors in RF’(u). As k + cc 
the iteration error generally decreases to zero while the intrinsic error, which 
depends on the chosen discretization, remains fixed. Given N, it is not worth 
reducing the iteration error too much since once the iteration error is smaller than 
the intrinsic error, the precision gain in iterating (7) becomes negligible. A more 
quantitative analysis of this point is given in Section 3A. 

C. Range Restriction 

In this section we describe a second optimization which we refer to as range 
restriction. It is convenient to rewrite (3) as follows: 

Nun+1 )+A= V(u,+l)+minG(u,+l,u,), 

G(u’, u) = W(d- u) +‘;i(u). 
(13) 

The discretized version of (7) using (13) is (with m = 1) given by 

R$+l)(~‘)=@‘(~‘)+ min G$)(u’, U) + Rf$)(u’)] - Ck+, , (14) ” 

where it is understood that u and U’ are taken from the set of N grid points. The 
discretized notation for GE’ is the same as for Rlyk’ defined in Section 2A. Consider 
the difference 

8$‘(u) = G:‘(u’, u) - Gjyk- “(u’, u) 

= R’j’(u) - Rlyk- l’(u) (15) 

which, as a function of k, describes how Gg’(u’, U) converges to G, E Gr’(u’, u). 
Assume that this convergence is bounded by the exponential 
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for any given U. Assuming (16) to be valid, then an upper bound for the amount 
that G!,!‘(U), U) can change in going to from k = 1 to k = cc is given by 

IAG$‘(u’, u)l 
k=l+l 

(17) 

IAG!t?W> u)I,,, is an upper bound for the deviation of GjVk=“(zi, U) from its value 
when k -+ cc. Numerically it is frequently found that 6$‘(u) behaves as an exponen- 
tially decaying oscillating function of k so that the actual deviation is smaller than 
the maximum value given by (17). If, for a given u’, G$$‘(u’, u) > Gg’(u’, w) + 
IAG;‘(u’, v)l max + IAG!ii’(u’, w)l,,, then the point v will never minimize G,.,,(u’, U) 
and therefore in (14) one need only consider the set Y$‘(u’) of u such that 

G$‘(u’, u)- 2”$~j’;‘“‘k < G$‘@‘, ub”‘(uy,, (18) 

where @‘(u’) is the u at which GjVk’(u’, U) is minimized. Those u for which (18) is 
not satisfied can never minimize GE’(u’, U) whenever (16) holds. In this way, for 
each value of u’, we restrict the range of u that need be considered and, as k -+ co, 
Ypjvk’(u’) will contain only the single element, z@‘(u’). 

In practice one does not know the exponents a(u) and it is not convenient to 
keep track of Y$‘(u’) for which N2 storage elements are required. Therefore we 
implement the above range restriction in a numerically convenient way: From (8) 
and ( 15) one has that 

d$‘=max ISc,k’ 
u 

so that, if (16) holds, then AC’ converges exponentially with exponent 
ct = max, m(u). Then (18) can be written 

G$‘(u’, u) -gA$’ < G:‘(u’, @‘(u’)), (19) 

2 
Byym-J (20) 

9 is a constant which is determined numerically (see Section 3A). 
We replace the set Y”jvk’(u’) by two bounds which bracket all of the elements of 

P’c’(u’). The minimization in (14) is performed only for those u that are between 
the left bound ZRlyk’(u’) and the right bound c%$(u’). Initially the bounds are 
chosen sufficiently large so as to bracket all u that might minimize G,+,(u’, u): 

up = 2z;‘“(u’); L%y(u’) = Lq!y(u’). (21) 

After each iteration k, and for each u’, ~YtpIvk’(u’) is increased until (19) is not 



194 KEVIN HOOD 

satisfied. a$)(~‘) is decreased in a similar manner. This is done until Y$‘(u’) = 
CJ?$‘(u’) = ub“‘(u’), at which point the minimum of G$)(u’, U) is fixed at Us’. 

As an example of the choice of Ye’” and .c%!~““(u’), assume that it is known, 
from some analysis of the potentials P’ and W, that only bond lengths satisfying 
a < z, < h are possible for all n, where z, = u,+, - u,. For instance, physical 
constraints often require that u,, < U, + , so that a 3 0. Also, when R(u) is periodic 
in u with period 1, and W(z) is a monotonically increasing function of z for z > z’, 
for some z’, then it is not hard to show from (3) that b <z’ + 1. Given a and b then 
one chooses 

dPzin(u’) = u’ + a (22) 

9’2”“( u’) = u’ + b. (23) 

It is understood that the positions in (22) (23) are taken on a regular grid with a 
spacing between grid points of l/N. In this particular example one finds 
/I = (b - a)/Z 5 z’/l+ 1, where fl was defined in the paragraph above (10). 

Two examples of G(u’, u) are shown schematically in Fig. 1. In Fig. la, the most 
common case, the solid line represents G(u’, U) for some value of U’ and as a func- 
tion of u. The broken line shows schematically how the numerical approximation 
GN(u’, u) behaves. Although G(u’, U) and GN(u’, u) do not coincide, for both func- 
tions the minimum is near u0 and the secondary minimum at u, is higher that u0 
by more than the intrinsic error of G,,,(u’, U) so that as convergence is approached 
only the minimum at u0 is bracketed. A second case can occur at particular values 
of u’ as shown in Fig. lb. G(u’, U) has two minima, at u0 and u, with G(u’, uO) < 
G(u’, u,), that are degenerate to within the intrinsic error of GN(u’, u). As a result, 
it can occur that G,,,(u’, u,) < GN(u’, uO) as shown by the broken line. During much 
of the convergence both of the nearly degenerate minima, at u0 and u,, are 
bracketed along with the points between them where (19) is not satisfied. At some 
value k = K, as G’,k’(u’, U) converges, it will happen that 

G’,K’(u’, q,) - Gf’(u’, ul) > ?A’,K’ 

and subsequently, for k 2 K, only the minimum at u L will be bracketed. Since u, 
does not correspond to the correct minimum of the undiscretized G(u’, u) then the 
resulting effective potential will not agree with that obtained without range restric- 
tion though the ground states for the two cases may or may not correspond. The 
importance of this intrinsic error effect is discussed in the next section. 

D. Range Restriction with Grid Doubling 

Including grid doubling with range restriction proceeds as described in 
Section 2B except that now the bounds Y$)(u’) and .@$‘(u’) must be resealed after 
each doubling. The safest way to do this is to reset .LZ~~(u’) and &?yi(u’) to the 
minimum and maximum values given in (21) after each grid doubling. This results, 
however, in a calculation time that varies as N*. If R,,,(U) is a good approximation 
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FIG. 1. Two schematic examples of G(u’, U) (solid line) and its discrete approximation G,&(u’, U) 
(dashed line) as a function of u for fixed u’. (a) Only one minimum occurs within the intrinsic error of 
G(u’, u). (b) A secondary minimum occurs within the intrinsic error of the correct minimum. 

581:89’1-14 
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to R,,(u), then Y$‘(u’) and B!$)(u’) can be scaled in a way that leads to a linear 
dependence in N: 

where -9, = .O(N. E). JV is a small constant, which we usually choose equal to a few 
grid spacings, to account for the possible fluctuations in the position of the minima 
u,(u’) which can occur since the GN(zL, u) are only discrete approximations to 
G(u’, u). 

It is clear from Fig. lb that one must be careful in applying (24). If a sufficiently 
high precision is obtained for a given grid M, where one of the G,(v, u), for fixed 
u, behaves as in Fig. 1 b then the incorrect root u, will be bracketed as it 
corresponds to the minimum of G, (v, u). Upon doubling using (24), the root u, 
will remain bracketed and uO, the correct minimum as N -+ cc, will be lost. 
Consider the effect that this will have on the discretized map tN(,x). If u occurs 
in the limit cycle corresponding to the ground state then u, does as well by the 
definition of the map r(u), and the wrong ground state will be obtained. If u does 
not occur in the ground state cycle then the wrong choice of minima will have no 
effect on the ground state though the effective potential will be incorrect. 

One way to avoid the above problem is to scale the brackets Y$‘(u’) and 
$!$‘(u’) at some iteration k = i before a precision is obtained that is sufficiently 
high to isolate the wrong minimum: 

L?$$y,(u’) = qf’(u’) - ~A”; .@~~(u’) = @$d’) + ,r. (25) 

This can be done by choosing j to be the first iteration which satisfies 

d’,‘<cj(N). 6’6) 

The function 4(N) should be chosen to be larger than the largest possible intrinsic 
variation in G,(u’, u) for u’ and u. This is discussed more quantitatively in 
Section 3A. 

The calculation time can be estimated for the case of both grid doubling and 
range restriction. When the brackets are scaled according to (25) then, for a given 
intermediate grid of M points, only a few of the possible values of u in Gjl;‘(u’, u) 
are bracketed for any given u’. On average there are r~‘~’ such values, where v(k) is 
roughly equal to 2.Af when k is small and tends towards 1.0 as k -+ co. Only about 
Mq of the total /?M* points are considered in one iteration of the algorithm to 
calculate RM (u), where u] is a suitable average over k of qck’. A calculation similar 
to that leading to (11) and (12) gives 

(27) 
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which is roughly linear in N whenever the Y(N,, E,) are not strongly Nrdependent 
as is generally found to be the case numerically. The improvement in execution time 
of (27) over (12) is a factor of about BN/q which, for a typical value of q z 10 and 
/I z 2, should lead to calculations times roughly 200 times smaller for a typical grid 
of 1000 points. If the brackets are scaled according to (21) on the other hand, then 
fl (O) = /IN and the above value of q turns out to be roughly proportional to N. In 
this case the calculation time is given by a formula similar to (12) which is propor- 
tional to N2. 

E. Site Elimination 

Site elimination is the name that is given to a further optimization that can be 
applied when range restriction is used and when the ground state, but not the 
effective potential, is sought. Consider the map x= rN(x’), where we use x to 
denote one of the Q values of u that is part of the ground state sequence of grid 
points; Q is the period of the ground state configuration. It is easy to see that each 
x must be contained in the restricted region 9$)(x’). Define the new set of grid 
points in the following self-consistent way: 

sg?= u Y$‘(u)VuuE~jyk). 
F$) is the union of the sets Y$‘(u) for those values of u that are themselves in 
F$). The elements of the ground state, defined by the map r,,,(x), are trivially 
elements of Yjvk) for all k. When k is sufficiently small, however, other grid points 
may also be contained in Y$‘. The usefulness of F-jvk) is that those U’ that are not 
elements need not be considered in iterating (14). When k is large and Y-jvk) con- 
tains only a few elements, the resulting decrease in t,, can be significant. 

We implement site elimination only on the largest grid once the last grid 
doubling has been performed. For the few cases that we have examined in detail, 
it turns out that the improvement in the calculation time is roughly a factor of 2 
or 3 in most cases with a slightly larger improvement occurring for configurations 
of large Q. Since most of the execution time is in the calculations at the largest grid 
size it was felt that including site elimination at grids other than the final grid 
would not lead to a large enough improvement in execution time to justify the extra 
program code. This has not been verified, however. Numerical results on the effect 
of site elimination on t,, are presented in Section 3B. 

3. NUMERICAL RESULTS 

In this section we present numerical results: to provide a more quantative estima- 
tion of the errors present in the calculations, to justify certain assumptions that 
were made in Section 2, and finally to show the effects of the above-mentioned 
optimizations on the calculation time. The calculations were performed using 
Pascal on Definicon Systems coprocessor-cards DSI-020 and DSI-780 which run in 
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an IBM-PC environment [6]. The associated 68020 CPU and 68881 FPU provide 
roughly the same performance as that of a VAX 11/780. All of the data points that 
we consider are from different regions of the phase diagram for the model described 
in [7]. In this model the potentials in (1) are given by 

V(x) = j$ [ 1 - cos(xtq], 

W(y)= -f(Y-Y)2+i(Y-Y)4. 

V(x) is a substrate potential of depth 2K/B2 and period 2n/8 and the interaction 
potential W(u) has a double well form. Commensurate phases are described in 
terms of a three component winding number [7]: 

co= P:Q:R, 

where P, Q, and R are defined in [7]. In this work it is only necessary to know that 
Q is the number of atoms in one period of the ground state and we refer to it 

1 o-2 

1 o-3 

1 o-6 

1 o-7 
1 I I I I I I I 
5 6 7 8 9 10 11 12 13 

FIG. 2. ARhms and ART as functions of N. For clarity, points for ARys and ARF are displaced 
to the right and left, respectively. The points are calculated for points of different period: (0 ) Q = 1; (0 ) 
Q = 2; (A ) Q = 5; (0) Q = 15; (Sr) Q = 26. The solid line represents the upper bound for the intrinsic 
error given in (28). The long- and short-dashed lines are, respectively, the functions s(N) and d(N) 
introduced in (9) and (26) 
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simply as the period of that phase. Our observations on a number of other models 
suggest that the numerical results presented here are typical. 

A. Intrinsic and Iteration Errors 

Values for ARhmS and ARzaX as a function of N are shown in Fig. 2 for ground 
states with period ranging from 1 to 26. The points for ARyS are displaced slightly 
to the left of those for ARE”” for clarity. It is noteworthy that ARY” and AR:“” 
only differ by about a factor of two indicating that R, converges reasonably 
uniformly as N -+ 00. In addition, both fall into relatively narrow bands showing 
only a weak dependence on w. These bands decay according to the power law 
AR,- Neatnt with qnt g 1.66. We assume that this power law is obeyed as N -+ co 
and we take the solid line in Fig. 2 as an upper bound for ARF: 

AR syp = AN- a’“’ t-28) 

with A = 3. An upper bound for the intrinsic error of R,,,(U) for any u can be 
obtained by summing (28) over the appropriate N as N is doubled to co: 

F,,,(N)- [RN(u)- R(u)1 5 F A(N2”)p”‘“’ 

1 
= 1 _ 2 -~,nt ARKP z 1.5 ARFP. 

s 

-Z 

a 

k 
FIG. 3. A$) as a function of k for a phase of period Q = 11. 
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An analysis of the iteration error is not as straightforward as that of the intrinsic 
error. Figure 3 shows an example of the dependence of A$‘, defined in (8), on k. 
The data corresponds to a phase of period Q = 11 and for a grid of N = 1024 points. 
No grid doubling was performed. At large values of k ( 260) the convergence is that 
of a modulated exponential with exponent a, = 0.042 and with a modulation of 
period 11. Interestingly, this modulation period is always found to be equal to the 
periodicity, Q, of the eventual ground state. At smaller values of k (10 5 k 5 40) the 
convergence is similar but now with exponent ay = 0.19 and with a modulation 
period of between 5 and 6. It is worthy of note that, in the K - y - 8 phase diagram, 
this period 11 phase occurs in a region between two much larger regions where 
phases of period 5 and 6, respectively, are the groundstates. In fact, in going from 
the Q = 5 to the Q = 6 regions, a large number of higher period phases occur 
suggestive of a Devil’s staircase like behavior (see [2, 71 for instance). Here we are 
only interested in the largest step corresponding to Q = 11. The numerical behavior 
is, in light of this observation, quite interesting and suggests that, initially for small 
k, convergence is toward the pure u&ejected phases with smallest period as 
suggested by the periodic modulation of A$) with period between 5 and 6. Only at 
higher values of k does the presence of higher order defected phases (smaller steps 
in the Devil’s staircase) show up in the form of the convergence of A$). This inter- 
pretation is further supported by the observation that CZ~ is found to have a definite 

FIG. 4. a, as a function of Q for points from several different areas of the K-y - 8 parameter space. 
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dependence on Q as shown in Fig. 4. Phases from several widely separated regions 
of parameter space were used and it is found that, to within a few percent, 

CQ = 5.4/Q*. (29) 

This relation is well followed even by the intermediate exponential regions, when 
they occur, provided that the effective period q is used rather than Q (in the 
example in Fig. 3, 5 <q < 6, for 10 5 k 5 40). 

This behavior of different periodically modulated exponential regions is typical of 
the cases that we have investigated. As one might expect, when regions of the phase 
diagram corresponding to even higher order steps in the Devil’s staircase are con- 
sidered then more exponential regions with different slope and different modulating 
periods can be identified. 

Assuming the above periodically modulated exponentially decaying behavior to 
be typical then an estimate for the iteration error can be made. For k 3 k,, for any 
given (positive) k,, A,,, (k) is bounded from above by a function which can be written 

A”“(k; k,) = A(k,,) ep+ pkO’. (30) 

An upper bound for the iteration error associated with RjykO’ is obtained by 
summing (30) from k = k, to k = 00 which gives 

&,,(k,) E max IR’,k”‘(u) - RF’(u)1 5 A(h) 
u (1 -exp(-ap))’ 

When LX~ is small (Q* + 5.4) then &&(k,) z A(k,)/a, - Q2. 
From (20) and (29) one has that 9 5 Q’/3 (clo is equivalent to the c( used in 

Section 2C). At a given point in parameter space the value that should be chosen 
for 9 depends on Q but knowledge of Q requires that the numerical method be 
applied with some value for 8. In our numerical method we generally choose 
9 z l&20 which we find works line in most cases, even when Q $ (38)“‘. Occa- 
sionally this value for 9 is too small leading to wrong results. It is found that these 
wrong results tend to occur in a localized region of parameter space leading to 
areas of the phase diagram that do not agree with the expected behavior clearly 
indicating the presence of a problem. 

Consider now the choice of E(N) that was introduced in Section 2A. In the grid 
doubling scheme, the precision E(N) should be chosen to have the same exponential 
dependence as AR,,,. On one hand, E(N) should be chosen small so that R, is a 
good approximation to RzN. On the other hand, because of the intrinsic error, after 
grid doubling the precision of Rrd will only be of order ARrS no matter how small 
E(N) is chosen. A good choice is then to choose F(N) so that A$’ -E(N) when the 
intrinsic and iteration errors are roughly the same magnitude. This occurs when 
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As with 8, the proper choice of E(N) requires prior knowledge of the final result. 
The E(N) that we have used and which is found to work well is shown by the long- 
dashed line in Fig. 2. An even simpler choice for E(N) that works well involves using 
one value, E~<~, for all but the final largest grid. For the largest grid a somewhat 
larger value Ed is used. Good choices are sd< D z 4N/2) and Ed E E(N). The 
threshold 4(N), introduced in Section 2D, should be chosen somewhat larger than 
AR;“” to avoid the problems described in Section 2D. The value that we use for the 
numerical results in Section 3B is shown by the short-dashed line in Fig. 2. 

B. Calculation Times for Different Levels of Optimization 

In this subsection we present numerical results for the time required to calculate 
R(u) as a function of the grid size, N, and when different combinations of the 
optimizations, described in Section 2, are used. Figures 5 and 6 show the calcula- 
tion times for one point as a function of the grid size N which, for convenience, we 
have taken to be a power of 2. In each case, several different combinations of 
optimization are considered. These are indicated in the legend in Fig. 5. In the four 
columns on the right of the legend, a letter represents the presence of a given 
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FIG. 5. Execution time for a point with period 5 as a function of N and for different levels of 
optimization. The presence/absence of one of D, R, S, or K in the legend indicates the presence/absence 
of the corresponding optimization: D = grid doubling; R = range restriction; S = boundary scaling using 
(25totherwise using (21); K = site elimination. 
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optimization whereas the absence of that letter means that that optimization was 
not used. The optimizations are: 

D Grid doubling (Section 2B). 
R Range restriction (Section 2C). 

S Boundary scaling using (24); otherwise (21) is used. 
K Site elimination (Section 2E). 

For added clarity, solid/broken lines have been used to indicate the presence/ 
absence of grid doubling. Similarly, open/solid symbols denote the presence/absence 
of range restriction. We denote the execution time by t,, [xy . . . 1, where x, y, . are 
the symbols, described above, for the different optimizations that have been used. 
For instance, t,, [ ] indicates that no optimizations are used, t,, [DR] indicates 
grid doubling and range restriction and so on. 

Consider Fig. 5 corresponding to a ground state with Q = 5. When no optimiza- 
tions are present t,, [ ] varies roughly as N* as expected by (lo), since the number 
of iterations required for convergence is almost independent of N. With grid 
doubling it is found that t,, [D] is roughly a factor of 2 smaller than t,, [ ] with 
the same N* dependence. With range restriction only, a more significant improve- 
ment is noted and t,, [R] % t,, [ ]/5. With grid doubling and range restriction but 

10000 

';;‘ 1000 
u 

Fi 

: 
VI 100 

d 

E +-J 
IO 

1 

b b 
- - w=7:26:32 w=7:26:32 / / 

I I I I I I I I I I I I I I I I 

5 5 6 7 6 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 

Lo92(N) Lo92(N) 

FIG. 6. Exacution time for a point with period 26 as described in the figure caption for Fig. 5. 
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with the bracketed regions scaled using (21) then t,, [DR] z t,,[ ]/lo. When the 
brackets are scaled using (25) one finds the biggest improvement in t,, and, as 
expected from the disussion of Section 2D, t,, [DRS] varies roughly linearly 
with N. With site elimination, a small but significant improvement is noted. For 
large N, the total increase in speed is 

t,, C I/t,, CDRSKI = N/3. 

We find the behavior shown in Fig. 5 for Q = 5 to be typical of the results when 
Q is relatively small. An example when Q is relatively large is shown in Fig. 6 for 
Q = 26. The behavior of the execution time as a function of N and the various 
optimizations is qualitatively the same as in Fig. 5 except for certain details. Both 
t,, [ ] and t,,x [D] increase somewhat faster that N2. This occurs because the 
number of iterations required for convergence increases with N which in turn is a 
result of choosing s(N) to be a decreasing function of N. 

Finally, we find the dependence of t,,[DRSK] with the ground state period Q 
to be roughly linear although there is a significant variation depending, for 
instance, on the exact region of the phase diagram being investigated and on the 
proximity of a given point in phase space to a phase boundary. 

C. Convergence of R:‘(U) with m = 0 

It was mentioned in Section 2A that R$‘(u) does not converge to RN(u) as 
k + cc when m = 0 in (7). The behavior of R$‘(u) is, however, of some interest. 
Consider the symetric effective potential defined in (5). The discretized FE’(u) is 
defined analogously to R%)(U). At convergence, when m = 1, FN(u) has, for a 
ground state of period Q, Q minima of exactly the same depth. If (7) is iterated with 
m = 0 one finds instead that FE)(u) converges to a cycle of period Q, where 

for each k, where fk + 0 as k + co (the tilde indicates calculation with m = 0). The 
actual rate of convergence to P,(U) = F!,?)(U) is found to depend on Q in the same 
way as when m = 1. F,(u) shows the same inversion symmetry as does FN(u) and 
RN(u), though for a given k there are no longer Q equal minima. If, however, one 
calculates the average 

one finds, to within numerical precision, that FN(u) has Q equivalent minima at the 
same positions as the Q minima of FN(u). The difference FN(u) - F,(u) is not zero 
to within numerical precision for finite N though it appears to converge to zero as 
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N + a. The results of this section were found to occur in each of the few cases that 
were examined and, although the m = 0 case has not proved useful in improving 
our method of solving for the effective potentials, it may be of interest for future 
studies into solving equations such as (7). 

4. DISCUSSION 

In this article we have presented a numerical method for solving for the 
discretized effective potentials and ground states for a certain class of problems 
involving classical one-dimensional chains of atoms with nearest neighbor inter- 
actions. The major advantage of our method is that the calculation time is found 
to vary roughly linearly with the size of the grid, N, on which the effective potential 
is discretized. This is to be compared with N2 or worse when the optimizations are 
removed and with the difference between N2 and N3 when the modified Karp-von 
Golitchek algorithm [3] is used. The advantages of the latter method are that it 
finds the exact ground state and that it is easily vectorized as is the iterative method 
without optimizations or with just grid doubling. The optimized iterative scheme 
would not enjoy any large improvements in t,, as a result of vectorization. Its much 
smaller execution time, however, means that, when implemented on a micro- or 
minicomputer, it is competitive with the other two methods being executed on 
systems, where vectorization is available. The main disadvantages of the optimized 
iterative method are the added complexity and the dependence on a larger number 
of numerically supported but not proven properties of the effective potentials. 
Verification by removing some of the optimizations to occasionally check the 
results as well as having a rough idea of how the results should behave is useful in 
applying the above methods. We have found that this method has permitted a 
detailed investigation into the phase diagrams of a number of different models with 
a modest amount of computing power. 

It is worth discussing how the algorithm that we have presented might be 
extended to different models other that those described by (1). A generalization can 
be made, for instance, to include higher neighbor interaction terms. When up to 
second neighbor terms are included, (1) can be rewritten so as to have the same 
form but with u and U’ replaced by two-component vectors r and r’. The anisotropic 
next nearest neighbor Ising (ANNNI) model (see, for instance, [S]) and the elastic 
model of Janssen and Tjon [9] are two examples. In these cases R,,,(r) is delined 
on a square grid of N2 points. Each grid doubling now increases the number of grid 
points by a factor of 4 and range restriction requires N2 puirs of brackets. While 
the unoptimized algorithm would be expected to have t,, - N4, the optimized vcr- 
sion should have t,,., - N2 which is a considerable improvement. It should therefore 
be possible to obtain results on a grid of 100 x 100 points with about the same com- 
putational burden as that required for a grid of lo4 points in the nearest neighbor 
case. 
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